
Using the doRNG package
doRNG package – Version 1.6.1

Renaud Gaujoux

September 3, 2014

Contents

Introduction . . . . . . . . . . . . . 1

1 The %dorng% operator . . . . . . 3
1.1 How it works . . . . . . . . . 3
1.2 Seeding computations . . . . . 4
1.3 Difference between set.seed

and .options.RNG . . . . . . 6

2 Parallel environment indepen-
dence . . . . . . . . . . . . . . . . 7

3 Reproducible %dopar% loops . . 8

4 Reproducibile sets of loops . . 9

5 Nested and conditional loops . 9
5.1 Nested loops . . . . . . . . . . 10
5.2 Conditional loops . . . . . . . 11
5.3 Nested conditional loops . . . 12

6 Performance overhead . . . . . 13

7 Known issues . . . . . . . . . . . 14

8 News and changes . . . . . . . . 14

Session information . . . . . . . . . 16

References . . . . . . . . . . . . . . . 17

Introduction

Research reproducibility is an issue of concern, e.g. in bioinformatics [4, 8, 5]. Some
analyses require multiple independent runs to be performed, or are amenable to a split-
and-reduce scheme. For example, some optimisation algorithms are run multiple times
from different random starting points, and the result that achieves the least approximation
error is selected. The foreach package1 [2] provides a very convenient way to perform
parallel computations, with different parallel environments such as MPI or Redis, using a
transparent loop-like syntax:

1http://cran.r-project.org/package=foreach

1

http://cran.r-project.org/package=foreach
http://cran.r-project.org/package=foreach


# load and register parallel backend for multicore computations

library(doParallel)

## Loading required package: foreach

## Loading required package: iterators

## Loading required package: parallel

cl <- makeCluster(2)

registerDoParallel(cl)

# perform 5 tasks in parallel

x <- foreach(i=1:5) %dopar% {
i + runif(1)

}
unlist(x)

## [1] 1.420 2.931 3.924 4.248 5.393

For each parallel environment a backend is implemented as a specialised %dopar% oper-
ator, which performs the setup and pre/post-processing specifically required by the envi-
ronment (e.g. export of variable to each worker). The foreach function and the %dopar%

operator handle the generic parameter dispatch when the task are split between worker
processes, as well as the reduce step – when the results are returned to the master worker.

When stochastic computations are involved, special random number generators must
be used to ensure that the separate computations are indeed statistically independent
– unless otherwise wanted – and that the loop is reproducible. In particular, standard
%dopar% loops are not reproducible:

# with standard %dopar%: foreach loops are not reproducible

set.seed(123)

res <- foreach(i=1:5) %dopar% { runif(3) }
set.seed(123)

res2 <- foreach(i=1:5) %dopar% { runif(3) }
identical(res, res2)

## [1] FALSE

A random number generator commonly used to achieve reproducibility is the combined
multiple-recursive generator from L’Ecuyer [6]. This generator can generate independent
random streams, from a 6-length numeric seed. The idea is then to generate a sequence
of random stream of the same length as the number of iteration (i.e. tasks) and use a
different stream when computing each one of them.

The doRNG package2 [3] provides convenient ways to implement reproducible parallel
foreach loops, independently of the parallel backend used to perform the computation. We
illustrate its use, showing how non-reproducible loops can be made reproducible, even when
tasks are not scheduled in the same way in two separate set of runs, e.g. when the workers

2http://cran.r-project.org/package=doRNG

2

http://cran.r-project.org/package=doRNG
http://cran.r-project.org/package=doRNG


do not get to compute the same number of tasks or the number of workers is different. The
package has been tested with the doParallel3 and doMPI 4 packages [9, 1], but should work
with other backends such as provided by the doRedis package5 [Rpackage:doRedis].

1 The %dorng% operator

The doRNG package defines a new generic operator, %dorng%, to be used with foreach
loops, instead of the standard %dopar%. Loops that use this operator are de facto repro-
ducible.

# load the doRNG package

library(doRNG)

## Loading required package: rngtools

## Loading required package: methods

# using %dorng%: loops _are_ reproducible

set.seed(123)

res <- foreach(i=1:5) %dorng% { runif(3) }
set.seed(123)

res2 <- foreach(i=1:5) %dorng% { runif(3) }
identical(res, res2)

## [1] TRUE

1.1 How it works

For a loop with N iterations, the %dorng% operator internally performs the following tasks:

1. generate a sequence of random seeds (Si)1≤i≤N for the R random number generator
"L’Ecuyer-CMRG" [6], using the function nextRNGStream from the parallel pack-
age6 [7], which ensure the different RNG streams are statistically independent;

2. modify the loop’s R expression so that the random number generator is set to
"L’Ecuyer-CMRG" at the beginning of each iteration, and is seeded with consecu-
tive seeds in (Sn): iteration i is seeded with Si, 1 ≤ i ≤ N ;

3. call the standard %dopar% operator, which in turn calls the relevant (i.e. registered)
foreach parallel backend;

4. store the whole sequence of random seeds as an attribute in the result object:

3http://cran.r-project.org/package=doParallel
4http://cran.r-project.org/package=doMPI
5http://cran.r-project.org/package=doRedis
6http://cran.r-project.org/package=parallel

3

http://cran.r-project.org/package=doParallel
http://cran.r-project.org/package=doMPI
http://cran.r-project.org/package=doRedis
http://cran.r-project.org/package=parallel
http://cran.r-project.org/package=doParallel
http://cran.r-project.org/package=doMPI
http://cran.r-project.org/package=doRedis
http://cran.r-project.org/package=parallel


attr(res, 'rng')

## [[1]]

## [1] 407 642048078 81368183 -2093158836 506506973 1421492218 -1906381517

##

## [[2]]

## [1] 407 1340772676 -1389246211 -999053355 -953732024 1888105061 2010658538

##

## [[3]]

## [1] 407 -1318496690 -948316584 683309249 -990823268 -1895972179 1275914972

##

## [[4]]

## [1] 407 524763474 1715794407 1887051490 -1833874283 494155061 -1221391662

##

## [[5]]

## [1] 407 -1816009034 -580124020 1603250023 817712173 190009158 -706984535

1.2 Seeding computations

Sequences of random streams for "L’Ecuyer-CMRG" are generated using a 6-length integer
seed, e.g.,:

nextRNGStream(c(407L, 1:6))

## [1] 407 -447371532 542750874 -935969228 -269326340 701604884 -1748056907

However, the %dorng% operator provides alternative – convenient – ways of seeding
reproducible loops.

set.seed: as shown above, calling set.seed before the loop ensure reproducibility of the
results, using a single integer as a seed. The actual 6-length seed is then generated
with an internal call to RNGkind("L’Ecuyer-CMRG").

.options.RNG with single integer: the %dorng% operator support options that can be
passed in the foreach statement, containing arguments for the internal call to
set.seed:

# use a single numeric as a seed

s <- foreach(i=1:5, .options.RNG=123) %dorng% { runif(3) }
s2 <- foreach(i=1:5, .options.RNG=123) %dorng% { runif(3) }
identical(s, s2)

## [1] TRUE

Note: calling set.seed before the loop is equivalent to passing the seed in .options.RNG.
See Section 1.3 for more details.

The kind of Normal generator may also be passed in .options.RNG:

4



## Pass the Normal RNG kind to use within the loop

# results are identical if not using the Normal kind in the loop

optsN <- list(123, normal.kind="Ahrens")

resN.U <- foreach(i=1:5, .options.RNG=optsN) %dorng% { runif(3) }
identical(resN.U[1:5], res[1:5])

## [1] TRUE

# Results are different if the Normal kind is used and is not the same

resN <- foreach(i=1:5, .options.RNG=123) %dorng% { rnorm(3) }
resN1 <- foreach(i=1:5, .options.RNG=optsN) %dorng% { rnorm(3) }
resN2 <- foreach(i=1:5, .options.RNG=optsN) %dorng% { rnorm(3) }
identical(resN[1:5], resN1[1:5])

## [1] FALSE

identical(resN1[1:5], resN2[1:5])

## [1] TRUE

.options.RNG with 6-length: the actual 6-length integer seed used for the first RNG
stream may be passed via options.RNG:

# use a 6-length numeric

s <- foreach(i=1:5, .options.RNG=1:6) %dorng% { runif(3) }
attr(s, 'rng')[1:3]

## [[1]]

## [1] 407 1 2 3 4 5 6

##

## [[2]]

## [1] 407 -447371532 542750874 -935969228 -269326340 701604884 -1748056907

##

## [[3]]

## [1] 407 311773008 -1393648596 433058656 -545474683 2059732357 994549473

.options.RNG with 7-length: a 7-length integer seed may also be passed via options.RNG,
which is useful to seed a loop with the value of .Random.seed as used in some iter-
ation of another loop7:

# use a 7-length numeric, used as first value for .Random.seed

seed <- attr(res, 'rng')[[2]]

s <- foreach(i=1:5, .options.RNG=seed) %dorng% { runif(3) }
identical(s[1:4], res[2:5])

7Note that the RNG kind is then always required to be the "L’Ecuyer-CMRG", i.e. the first element of
the seed must have unit 7 (e.g. 407 or 107).

5



## [1] TRUE

.options.RNG with complete sequence of seeds: the complete description of the se-
quence of seeds to be used may be passed via options.RNG, as a list or a matrix
with the seeds in columns. This is useful to seed a loop exactly as desired, e.g. using
an RNG other than "L’Ecuyer-CMRG", or using different RNG kinds in each itera-
tion, which probably have different seed length, in order to compare their stochastic
properties. It also allows to reproduce %dorng% loops without knowing their seeding
details:

# reproduce previous %dorng% loop

s <- foreach(i=1:5, .options.RNG=res) %dorng% { runif(3) }
identical(s, res)

## [1] TRUE

## use completely custom sequence of seeds (e.g. using RNG "Marsaglia-Multicarry")

# as a matrix

seedM <- rbind(rep(401, 5), mapply(rep, 1:5, 2))

seedM

## [,1] [,2] [,3] [,4] [,5]

## [1,] 401 401 401 401 401

## [2,] 1 2 3 4 5

## [3,] 1 2 3 4 5

sM <- foreach(i=1:5, .options.RNG=seedM) %dorng% { runif(3) }
# same seeds passed as a list

seedL <- lapply(seq(ncol(seedM)), function(i) seedM[,i])

sL <- foreach(i=1:5, .options.RNG=seedL) %dorng% { runif(3) }
identical(sL, sM)

## [1] TRUE

1.3 Difference between set.seed and .options.RNG

While it is equivalent to seed %dorng% loops with set.seed and .options.RNG, it is im-
portant to note that the result depends on the current RNG kind 8:

# default RNG kind

RNGkind('default')

def <- foreach(i=1:5, .options.RNG=123) %dorng% { runif(3) }

8See Section 7 about a bug in versions ¡ 1.4 on this feature.

6



# Marsaglia-Multicarry

RNGkind('Marsaglia')

mars <- foreach(i=1:5, .options.RNG=123) %dorng% { runif(3) }
identical(def, mars)

## [1] FALSE

# revert to default RNG kind

RNGkind('default')

This is a “normal” behaviour, which is a side-effect of the expected equivalence between
set.seed and .options.RNG. This should not be a problem for reproducibility though, as
R RNGs are stable across versions, and loops are most of the time used with the default
RNG settings. In order to ensure seeding is independent from the current RNG, one has
to pass a 7-length numeric seed to .options.RNG, which is then used directly as a value
for .Random.seed (see below).

2 Parallel environment independence

An important feature of %dorng% loops is that their result is independent of the underly-
ing parallel physical settings. Two separate runs seeded with the same value will always
produce the same results. Whether they use the same number of worker processes, parallel
backend or task scheduling does not influence the final result. This also applies to com-
putations performed sequentially with the doSEQ backend. The following code illustrates
this feature using 2 or 3 workers.

# define a stochastic task to perform

task <- function() c(pid=Sys.getpid(), val=runif(1))

# using the previously registered cluster with 2 workers

set.seed(123)

res_2workers <- foreach(i=1:5, .combine=rbind) %dorng% {
task()

}
# stop cluster

stopCluster(cl)

# Sequential computation

registerDoSEQ()

set.seed(123)

res_seq <- foreach(i=1:5, .combine=rbind) %dorng% {
task()

}
#

# Using 3 workers

7



# NB: if re-running this vignette you should edit to force using 3 here

cl <- makeCluster( if(isManualVignette()) 3 else 2)

length(cl)

## [1] 3

# register new cluster

registerDoParallel(cl)

set.seed(123)

res_3workers <- foreach(i=1:5, .combine=rbind) %dorng% {
task()

}
# task schedule is different

pid <- rbind(res1=res_seq[,1], res_2workers[,1], res2=res_3workers[,1])

storage.mode(pid) <- 'integer'

pid

## result.1 result.2 result.3 result.4 result.5

## res1 29877 29877 29877 29877 29877

## 29894 29903 29894 29903 29894

## res2 29924 29933 29942 29924 29933

# results are identical

identical(res_seq[,2], res_2workers[,2]) && identical(res_2workers[,2], res_3workers[,2])

## [1] TRUE

3 Reproducible %dopar% loops

The doRNG package also provides a non-invasive way to convert %dopar% loops into repro-
ducible loops, i.e. without changing their actual definition. It is useful to quickly ensure
the reproducibility of existing code or functions whose definition is not accessible (e.g. from
other packages). This is achieved by registering the doRNG backend:

set.seed(123)

res <- foreach(i=1:5) %dorng% { runif(3) }

registerDoRNG(123)

res_dopar <- foreach(i=1:5) %dopar% { runif(3) }
identical(res_dopar, res)

## [1] TRUE

attr(res_dopar, 'rng')

## [[1]]

## [1] 407 642048078 81368183 -2093158836 506506973 1421492218 -1906381517

8



##

## [[2]]

## [1] 407 1340772676 -1389246211 -999053355 -953732024 1888105061 2010658538

##

## [[3]]

## [1] 407 -1318496690 -948316584 683309249 -990823268 -1895972179 1275914972

##

## [[4]]

## [1] 407 524763474 1715794407 1887051490 -1833874283 494155061 -1221391662

##

## [[5]]

## [1] 407 -1816009034 -580124020 1603250023 817712173 190009158 -706984535

4 Reproducibile sets of loops

Sequences of multiple loops are reproducible, whether using the %dorng% operator or the
registered doRNG backend:

set.seed(456)

s1 <- foreach(i=1:5) %dorng% { runif(3) }
s2 <- foreach(i=1:5) %dorng% { runif(3) }
# the two loops do not use the same streams: different results

identical(s1, s2)

## [1] FALSE

# but the sequence of loops is reproducible as a whole

set.seed(456)

r1 <- foreach(i=1:5) %dorng% { runif(3) }
r2 <- foreach(i=1:5) %dorng% { runif(3) }
identical(r1, s1) && identical(r2, s2)

## [1] TRUE

# one can equivalently register the doRNG backend and use %dopar%

registerDoRNG(456)

r1 <- foreach(i=1:5) %dopar% { runif(3) }
r2 <- foreach(i=1:5) %dopar% { runif(3) }
identical(r1, s1) && identical(r2, s2)

## [1] TRUE

5 Nested and conditional loops

Nested and conditional foreach loops are currently not supported and generate an error:

9



# nested loop

try( foreach(i=1:10) %:% foreach(j=1:i) %dorng% { rnorm(1) } )

## Error: nested/conditional foreach loops are not supported yet.

## See the package’s vignette for a work around.

# conditional loop

try( foreach(i=1:10) %:% when(i %% 2 == 0) %dorng% { rnorm(1) } )

## Error: nested/conditional foreach loops are not supported yet.

## See the package’s vignette for a work around.

In this section, we propose a general work around for this kind of loops, that will
eventually be incorporated in the %dorng% operator – when I find out how to mimic its
behaviour from the operator itself.

5.1 Nested loops

The idea is to create a sequence of RNG seeds before the outer loop, and use each of them
successively to set the RNG in the inner loop – which is exactly what %dorng% does for
simple loops:

# doRNG must not be registered

registerDoParallel(cl)

# generate sequence of seeds of length the number of computations

n <- 10; p <- 5

rng <- RNGseq( n * p, 1234)

# run standard nested foreach loop

res <- foreach(i=1:n) %:% foreach(j=1:p, r=rng[(i-1)*p + 1:p]) %dopar% {

# set RNG seed

rngtools::setRNG(r)

# do your own computation ...

c(i, j, rnorm(1))

}

# Compare against the equivalent sequential computations

k <- 1

res2 <- foreach(i=1:n) %:% foreach(j=1:p) %do%{
# set seed

rngtools::setRNG(rng[[k]])

k <- k + 1

# do your own computation ...

c(i, j, rnorm(1))

}

10



stopifnot( identical(res, res2) )

The following is a more complex example with unequal – but known a priori –
numbers of iterations performed in the inner loops:

# generate sequence of seeds of length the number of computations

n <- 10

rng <- RNGseq( n * (n+1) / 2, 1234)

# run standard nested foreach loop

res <- foreach(i=1:n) %:% foreach(j=1:i, r=rng[(i-1)*i/2 + 1:i]) %dopar%{

# set RNG seed

rngtools::setRNG(r)

# do your own computation ...

c(i, j, rnorm(1))

}

# Compare against the equivalent sequential computations

k <- 1

res2 <- foreach(i=1:n) %:% foreach(j=1:i) %do%{
# set seed

rngtools::setRNG(rng[[k]])

k <- k + 1

# do your own computation ...

c(i, j, rnorm(1))

}

stopifnot( identical(res, res2) )

5.2 Conditional loops

The work around used for nested loops applies to conditional loops that use the when()

clause. It ensures that the RNG seed use for a given inner iteration does not depend on
the filter, but only on its index in the unconditional-unfolded loop:

# un-conditional single loop

resAll <- foreach(i=1:n, .options.RNG=1234) %dorng%{
# do your own computation ...

c(i, rnorm(1))

}

# generate sequence of RNG

rng <- RNGseq(n, 1234)

11



# conditional loop: even iterations

resEven <- foreach(i=1:n, r=rng) %:% when(i %% 2 == 0) %dopar%{

# set RNG seed

rngtools::setRNG(r)

# do your own computation ...

c(i, rnorm(1))

}

# conditional loop: odd iterations

resOdd <- foreach(i=1:n, r=rng) %:% when(i %% 2 == 1) %dopar%{

# set RNG seed

rngtools::setRNG(r)

# do your own computation ...

c(i, rnorm(1))

}

# conditional loop: only first 2 and last 2

resFL <- foreach(i=1:n, r=rng) %:% when(i %in% c(1,2,n-1,n)) %dopar%{

# set RNG seed

rngtools::setRNG(r)

# do your own computation ...

c(i, rnorm(1))

}

# compare results

stopifnot( identical(resAll[seq(2,n,by=2)], resEven) )

stopifnot( identical(resAll[seq(1,n,by=2)], resOdd) )

stopifnot( identical(resAll[c(1,2,n-1,n)], resFL) )

5.3 Nested conditional loops

Conditional nested loops may use the same work around, as shown in this intricate example:

# generate sequence of seeds of length the number of computations

n <- 10

rng <- RNGseq( n * (n+1) / 2, 1234)

# run standard nested foreach loop

res <- foreach(i=1:n) %:% when(i %% 2 == 0) %:% foreach(j=1:i, r=rng[(i-1)*i/2 + 1:i]) %dopar%{

# set RNG seed

rngtools::setRNG(r)

12



# do your own computation ...

c(i, j, rnorm(1))

}

# Compare against the equivalent sequential computations

k <- 1

resAll <- foreach(i=1:n) %:% foreach(j=1:i) %do%{
# set seed

rngtools::setRNG(rng[[k]])

k <- k + 1

# do your own computation ...

c(i, j, rnorm(1))

}

stopifnot( identical(resAll[seq(2,n,by=2)], res) )

6 Performance overhead

The extra setup performed by the %dorng% operator leads to a slight performance over-
head, which might be significant for very quick computations, but should not be a problem
for realistic computations. The benchmarks below show that a %dorng% loop may take up
to two seconds more than the equivalent %dopar% loop, which is not significant in practice,
where parallelised computations typically take several minutes.

# load rbenchmark

library(rbenchmark)

# comparison is done on sequential computations

registerDoSEQ()

rPar <- function(n, s=0){ foreach(i=1:n) %dopar% { Sys.sleep(s) } }
rRNG <- function(n, s=0){ foreach(i=1:n) %dorng% { Sys.sleep(s) } }

# run benchmark

cmp <- benchmark(rPar(10), rRNG(10)

, rPar(25), rRNG(25)

, rPar(50), rRNG(50)

, rPar(50, .01), rRNG(50, .01)

, rPar(10, .05), rRNG(10, .05)

, replications=5)

# order by increasing elapsed time

cmp[order(cmp$elapsed), ]

## test replications elapsed relative user.self sys.self user.child sys.child

## 1 rPar(10) 5 0.031 1.000 0.031 0.000 0 0

## 3 rPar(25) 5 0.054 1.742 0.055 0.000 0 0

## 2 rRNG(10) 5 0.058 1.871 0.053 0.004 0 0

13



## 4 rRNG(25) 5 0.093 3.000 0.093 0.000 0 0

## 5 rPar(50) 5 0.096 3.097 0.096 0.000 0 0

## 6 rRNG(50) 5 0.158 5.097 0.153 0.004 0 0

## 9 rPar(10, 0.05) 5 2.597 83.774 0.094 0.000 0 0

## 10 rRNG(10, 0.05) 5 2.655 85.645 0.147 0.003 0 0

## 7 rPar(50, 0.01) 5 2.956 95.355 0.433 0.000 0 0

## 8 rRNG(50, 0.01) 5 3.026 97.613 0.502 0.005 0 0

7 Known issues

• Nested and/or conditional foreach loops using the operator %:% are not currently not
supported (see Section 5 for a work around).

• An error is thrown in doRNG 1.2.6, when the package iterators was not loaded,
when used with foreach ¿= 1.4.

• There was a bug in versions prior to 1.4, which caused set.seed and .options.RNG
not to be equivalent when the current RNG was "L’Ecuyer-CMRG". This behaviour
can still be reproduced by setting:

doRNGversion('1.3')

To revert to the latest default behaviour:

doRNGversion(NULL)

8 News and changes
*************************************************************************

* Changes in version 1.6.1 *

*************************************************************************

FIXES

o Non reproducible %dorng% loop when doRNG is registered over doSEQ

(Issue #1 reported by Brenton Kenkel). Actually due to %dorng% not

restoring the RNG (to state + 1) when doRNG is registered over doSEQ.

*************************************************************************

* Changes in version 1.6 *

*************************************************************************

CHANGES

o doRNG now depends on the package pkgmaker (>= 0.20)

FIXES

o Check error due number of cores used. Now limited to 2 in examples,

vignette and unit test.

*************************************************************************

14



* Changes in version 1.5 *

*************************************************************************

CHANGES

o doRNG now depends on the package pkgmaker (>= 0.9)

o improved vignette

o most of the general RNG utilities have been incorporated in a new

package called rngtools.

*************************************************************************

* Changes in version 1.4.1 *

*************************************************************************

CHANGES

o when the current RNG was L'Ecuyer-CMRG, unseeded loops now use

the current RNG stream as for the first stream in the RNG sequence

and changes the current RNG to the next RNG stream of the last stream

in the sequence.

BUG FIX

o fix error "'iter' not found" due to changes in foreach package

dependencies -- that was announced by Rich Calaway.

o loops seeded with set.seed and .options.RNG were not reproducible

when current RNG was L'Ecuyer-CMRG (reported by Zhang Peng)

o separate unseeded loops were sharing most of their streams,

when current RNG was L'Ecuyer-CMRG the RNG seed.

o nested/conditional loops were crashing with a bad error.

They are still not supported but the error message is nicer and a

work around has been added to the vignette (reported by Chanhee Yi

and Zhang Peng).

*************************************************************************

* Changes in version 1.2.3 *

*************************************************************************

BUG FIX

o fixed error when running a %dorng% loop on a fresh session, with no

parallel backend registered.

CHANGES

o improved vignette

o added more unit tests

o changed the name of the RNG attribute on result of %dorng% looops

from 'RNG' to 'rng'. It now contains the whole sequence of RNG seeds,

instead of only the first one.

o RNGseq now accepts a list or a matrix describing the whole sequence

of seeds. See vignette for more details.

o %dorng% loops can be seeded with a complete sequence of seeds passed

as a list, a matrix, or an object with attribute 'rng', e.g. the

results of %dorng% loops. See vignette for more details.

*************************************************************************

* Changes in version 1.2.2 *

*************************************************************************

BUG FIX

o separate %dorng% loops were using the same seed.

NEW FEATURES

o add unit tests

o first seed is set as an attribute of the loop's result

CHANGES

o function doRNGseed now returns the seed to use for the first

15



iteration.

o RNGseq now change the current RNG state if called with no seed

specific.

DEFUNCT

o removed function CMRGseed

*************************************************************************

* Changes in version 1.2 *

*************************************************************************

BUG FIX

o An error was thrown if using %dorng% loops before using any random

generator. Thanks to Eric Lehmann for reporting this.

CHANGES

o add vignette

o use package doParallel in examples

*************************************************************************

* Changes in version 1.1 *

*************************************************************************

CHANGES

o use R core RNG "L'Ecuyer-CMRG" and the parallel package,

instead of the implementation provided by the rstream package.

Cleanup

stopCluster(cl)

Session information

R version 3.1.1 (2014-07-10)

Platform: x86_64-pc-linux-gnu (64-bit)

locale:

[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C LC_TIME=en_ZA.UTF-8

[4] LC_COLLATE=en_US.UTF-8 LC_MONETARY=en_ZA.UTF-8 LC_MESSAGES=en_US.UTF-8

[7] LC_PAPER=en_ZA.UTF-8 LC_NAME=C LC_ADDRESS=C

[10] LC_TELEPHONE=C LC_MEASUREMENT=en_ZA.UTF-8 LC_IDENTIFICATION=C

attached base packages:

[1] methods parallel stats graphics grDevices utils datasets base

other attached packages:

[1] doRNG_1.6.1 rngtools_1.2.4 doParallel_1.0.8 iterators_1.0.7 foreach_1.4.2

[6] pkgmaker_0.25.7 registry_0.2 knitr_1.6

loaded via a namespace (and not attached):

16



[1] codetools_0.2-9 compiler_3.1.1 digest_0.6.4 evaluate_0.5.5 formatR_1.0

[6] highr_0.3 stringr_0.6.2 tools_3.1.1 xtable_1.7-3

References

[1] Revolution Analytics and Steve Weston. doParallel: Foreach parallel adaptor for the
parallel package. R package version 1.0.8. 2014. url: http://CRAN.R-project.org/
package=doParallel.

[2] Revolution Analytics and Steve Weston. foreach: Foreach looping construct for R. R
package version 1.4.2. 2014. url: http://CRAN.R-project.org/package=foreach.

[3] Renaud Gaujoux. doRNG: Generic Reproducible Parallel Backend for foreach Loops.
R package version 1.6.1. 2013. url: https://renozao.github.io/doRNG.

[4] Torsten Hothorn and Friedrich Leisch. “Case studies in reproducibility.” In: Briefings
in bioinformatics (Jan. 2011). issn: 1477-4054. doi: 10.1093/bib/bbq084. url:
http://www.ncbi.nlm.nih.gov/pubmed/21278369.

[5] John P A Ioannidis et al. “The reproducibility of lists of differentially expressed genes
in microarray studies”. In: Nature Genetics 41.2 (2008), pp. 149–155. issn: 10614036.
doi: 10.1038/ng.295. url: http://www.nature.com/doifinder/10.1038/ng.295.

[6] Pierre L’Ecuyer. “Good parameters and implementations for combined multiple re-
cursive random number generators”. In: Operations Research 47.1 (1999). url: http:
//www.jstor.org/stable/10.2307/222902.

[7] R Core Team. R: A Language and Environment for Statistical Computing. R Founda-
tion for Statistical Computing. Vienna, Austria, 2014. url: http://www.R-project.
org/.

[8] Victoria C Stodden. The Digitization of Science: Reproducibility and Interdisciplinary
Knowledge Transfer. 2011. url: http://aaas.confex.com/aaas/2011/webprogram/
Session3166.html.

[9] Steve Weston. doMPI: Foreach parallel adaptor for the Rmpi package. R package ver-
sion 0.2. 2013. url: http://CRAN.R-project.org/package=doMPI.

17

http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=doParallel
http://CRAN.R-project.org/package=foreach
https://renozao.github.io/doRNG
http://dx.doi.org/10.1093/bib/bbq084
http://www.ncbi.nlm.nih.gov/pubmed/21278369
http://dx.doi.org/10.1038/ng.295
http://www.nature.com/doifinder/10.1038/ng.295
http://www.jstor.org/stable/10.2307/222902
http://www.jstor.org/stable/10.2307/222902
http://www.R-project.org/
http://www.R-project.org/
http://aaas.confex.com/aaas/2011/webprogram/Session3166.html
http://aaas.confex.com/aaas/2011/webprogram/Session3166.html
http://CRAN.R-project.org/package=doMPI

	Introduction
	The %dorng% operator
	How it works
	Seeding computations
	Difference between set.seed and .options.RNG

	Parallel environment independence
	Reproducible %dopar% loops
	Reproducibile sets of loops
	Nested and conditional loops
	Nested loops
	Conditional loops
	Nested conditional loops

	Performance overhead
	Known issues
	News and changes
	Session information
	References

