
aheatmap: a Powerful Annotated Heatmap Engine
Package NMF - Version 0.22

Renaud Gaujoux

December 4, 2014

Abstract

This vignette showcases the main features of the annotated heatmap engine implemented
by the function aheatmap. This engine is a highly enhanced modification of the function
pheatmap from the pheatmap package1, and provides convenient and quick ways of producing
high quality and customizable annotated heatmaps. Currently this function is part of the
package NMF , but will most probably eventually constitute a separate package on its own.

Contents

1 Overview 1

2 Preliminaries 2

2.1 Installation 2

2.2 Sample data 2

3 Components 2

4 Annotation tracks 3

5 Column/row ordering 3

5.1 Hierarchical clustering and dendro-
grams 3

5.1.1 Display 4

5.2 Forced order 5

6 Borders 5

7 Colours 6

8 Labels 6

9 Legends 6
9.1 Colour scale 6

9.1.1 Colours and breaks 7
9.1.2 Look and position 7

9.2 Annotations 7

10 Session Info 7

1 Overview

The development of the function aheatmap started as modification of the function pheatmap from
the pheatmap package2. The initial objective was to improve and increase its capabilities, as well
as defining a simplified interface that was more consistent with the R core function heatmap. It is
evolving into a general, flexible, powerful and easy to use engine for drawing annotated heatmaps.

The function aheatmap has many advantages compared to other heatmap functions such as
heatmap, gplots::heatmap2, heatmap.plus::heatmap.plus , or pheatmap:

• Annotations: unlimited number of annotation tracks can be added to both columns and
rows, with automated colouring for categorical and numeric variables.

• Compatibility with both base and grid graphics: the function can be directly called in
drawing contexts such as grid, mfrow or layout. We believe that this is a feature many R
users will enjoy, and that is strictly impossible with base heatmaps.

• Legends: default automatic legend and colouring;

1http://cran.r-project.org/package=pheatmap
2http://cran.r-project.org/package=pheatmap

1

http://cran.r-project.org/package=pheatmap
http://cran.r-project.org/package=pheatmap
http://cran.r-project.org/package=pheatmap
http://cran.r-project.org/package=pheatmap

• Customisation: clustering methods, annotations, colours and legend can all be customised,
even separately for rows and columns;

• Convenient interface: many arguments provide multiple ways of specifying their value(s),
which speeds up developping/writing and reduce the amount of code required to generate
customised plots (e.g. see ??).

• Aesthetics: the heatmaps look globally cleaner, the image and text components are by
default well proportioned relatively to each other, and all fit within the graphic device – if
not set to an unresonnably small size.

2 Preliminaries

2.1 Installation

The aheatmap function is currently part of the NMF package3, which can be installed from any
CRAN mirror or from the GitHub repository4, for the development version, with the following
commands:

latest stable

intall.pacakges('NMF')

development version

devtools::install_github('NMF', 'renozao', 'devel')

2.2 Sample data

For the purpose of illustrating the capabilities of the function aheatmap, we first generate some
random data that we will use throughout the vignette:

data matrix

x <- rmatrix(20, 10, .rng = 1234)

ann_col <- list(Groups = gl(2, 5))

3 Components

Annotated heatmaps essentially use grid graphics5, composing the global picture by putting
together the following components (or viewports in grid language):

dendrograms clusters and order columns/rows;

annotations are additional tracks that provide extra information about each column/row ac-
cording to some associated auxiliary data;

data matrix , i.e. the heatmap itself, shown as coloured cells;

labels associates each column/row with some textual information;

legends such as value scales or color code used for the data matrix or annotations;

other information like main title, sub-title, extra information pane.

Figure 1 shows a diagram of two possible grid layout that combined the above listed components
into a complete annotated heatmap.

3http://cran.r-project.org/package=NMF
4http://github.com/renozao/NMF
5Except for drawing dendrograms, which are plotted using the proven and well optimised base function

plot.dendrogram.

2

http://cran.r-project.org/package=NMF
http://cran.r-project.org/package=NMF
http://github.com/renozao/NMF

default layout

aheatmap_layout()

alternative layout

aheatmap_layout("amld | dlma")

R
ow

 d
en

dr
og

ra
m

R
ow

 a
nn

ot
at

io
n

tr
ac

ks

R
ow

 la
be

ls

A
nn

ot
at

io
n

le
ge

nd

Main title

Column dendrogram

Column annotation tracks

Data

Column labels

Subtitle

Extra info pane

R
ow

 a
nn

ot
at

io
n

tr
ac

ks

R
ow

 la
be

ls

R
ow

 d
en

dr
og

ra
m

A
nn

ot
at

io
n

le
ge

nd

Main title

Column dendrogram

Column labels

Data

Column annotation tracks

Subtitle

Extra info pane

Figure 1: Grid layout diagram of annotated heatmaps: (left) default layout and (right) an
alternative layout, with separate specification for rows and columns – passed as a single string.

4 Annotation tracks

5 Column/row ordering

The rows and/or columns of heatmaps are generally ordered in a way that highlight shared value
patterns. This ordering can be automatically computed from the data itself, using hierarchical
clustering algorithms, or forced to match known groups/order. Arguments Rowv, Colv, as well
as distfun and hclustfun for automatic clustering, control how the ordering is performed and
displayed. They accept the same values as the base function aheatmap, mimicking its behaviour,
but also supports other convenient ways of specifying ordering and highlighting data patterns,
some of which are illustrated in the rest of this section. We refer to the corresponding argument
description on the man page ?aheatmap for a list of all supported values.

5.1 Hierarchical clustering and dendrograms

Dendrograms display result of applying a hierarchical clutering algorithm to the rows or columns,
typically using the base function hclust.

By default aheatmap performs hierarchical clustering and show the associated dedrograms of
both rows and columns, using the "euclidean" distance and the linkage method "complete".
However more custom clustering can also be specified:

default

aheatmap(x)

use different clustering method for rows

aheatmap(x, Rowv = c('manhattan', 'average'), info = TRUE)

use enternally computed clustering

hc <- hclust(dist(x, method = 'minkowski'), method = 'centroid')

aheatmap(x, Rowv = hc, info = TRUE)

3

4 5 2 6 9 10 7 1 3 8

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18

0.2

0.4

0.6

0.8

4 5 2 6 9 10 7 1 3 8

13

6

10

1

12

9

14

16

2

4

11

5

3

15

17

20

8

19

7

18

0.2

0.4

0.6

0.8

rows: manhattan / average − cols: euclidean / complete

4 5 2 6 9 10 7 1 3 8

13

6

16

12

20

1

10

4

9

14

2

18

7

8

19

5

17

11

3

15

0.2

0.4

0.6

0.8

rows: minkowski / centroid − cols: euclidean / complete

5.1.1 Display

cluster rows but do not show dendrogram

aheatmap(x, Rowv = FALSE)

cut column dendrogram into 3 clusters

aheatmap(x, Rowv = FALSE, Colv = 3L)

aheatmap(x, Rowv = FALSE, Colv = -3L)

4 5 2 6 9 10 7 1 3 8

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18

0.2

0.4

0.6

0.8

1 3 8 7 10 4 5 2 6 9

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18

0.2

0.4

0.6

0.8

1 3 8 7 10 4 5 2 6 9

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18

0.2

0.4

0.6

0.8

aheatmap also provides some convenient shortcuts to use the dendextend package6 and produce
enhanced cluster highlighting, with colors, text and boxes:

cluster highlighting

aheatmap(x, Rowv = "#4", Colv = FALSE, main = "Colored clusters")

aheatmap(x, Rowv = "#4|!", Colv = FALSE, main = "Boxed clusters")

highlight cluster #2 only adding some red text

aheatmap(x, Colv = list("#3@2", text_col = 'red', text = 'Cluster B'), Rowv = FALSE

, main = "Partial highlithing")

4 5 2 6 9 10 7 1 3 8

13

2

4

11

17

10

1

12

6

20

8

19

5

3

15

9

16

14

7

18

0.2

0.4

0.6

0.8

Colored clusters

4 5 2 6 9 10 7 1 3 8

13

2

4

11

17

10

1

12

6

20

8

19

5

3

15

9

16

14

7

18

0.2

0.4

0.6

0.8

Boxed clusters

Cluster B

1 3 8 7 10 4 5 2 6 9

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18

0.2

0.4

0.6

0.8

Partial highlithing

6http://cran.r-project.org/package=dendextend

4

http://cran.r-project.org/package=dendextend
http://cran.r-project.org/package=dendextend

A completely custom pre-formatted dendrogram can also be build and passed to Rowv (or Colv),
controlling both ordering and display. For example, using the dendextend package7, one can format
a dendrogram in a complex way and simply “plug” it into the row or column dendrogram panel:

use pre-formatted dedrogram

library(dendextend)

hc <- hclust(dist(t(x)))

hc <- as.dendrogram(hc) %>%

set("nodes_pch", c(19,1,4)) %>%

set("nodes_cex", c(2,1,2)) %>%

set("nodes_col", c(3,4))

hc <- hc %>% set("branches_lwd", c(4,1)) %>%

set("branches_lty", c(1,1,3)) %>%

set("branches_col", c(1,2,3))

aheatmap(x, Colv = hc, Rowv = FALSE

, main = "Custom dendrogram")

1 2 3 4 5 6 7 8 9 10

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0.2

0.4

0.6

0.8

Original

5.2 Forced order

Column and row order can also be forced to a given order by passing an integer indexing vector
or NA for keeping the original order. It is important that the indexing vector is effectively an
integer vector, as passing a numeric vector would only provides weights used when re-ordering the
computed dendrogram. When weights are used, the resulting dendrogram is essentially the same,
with branches (and leaves) ordered in different ways (see the two last heatmaps below).

orignal order

aheatmap(x, Rowv = NA, Colv = NA, main = 'Original')

indexing vector

aheatmap(x, Rowv = NA, Colv = seq(ncol(x), 1), main = 'Forced (inverse)')

not the same as numeric weight vector

aheatmap(x, Rowv = NA, Colv = as.numeric(seq(nrow(x), 1)), main = 'Values used as weights')

compare with no weights

aheatmap(x, Rowv = NA, main = 'Default weighting')

1 2 3 4 5 6 7 8 9 10

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0.2

0.4

0.6

0.8

Original

10 9 8 7 6 5 4 3 2 1

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0.2

0.4

0.6

0.8

Forced (inverse)

1 3 8 7 10 4 5 2 6 9

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0.2

0.4

0.6

0.8

Values used as weights

4 5 2 6 9 10 7 1 3 8

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0.2

0.4

0.6

0.8

Default weighting

6 Borders

Borders of the different elements can be controlled using argument border. Passing a single value
draws a border on all relevant elements using the specified color, and a finer control is possible by
providing a list of border graphical parameters for specific element separately (Figure 2):

cell border around each cell in the data matrix;

matrix border around the data matrix;

7Code borrowed from http://cran.r-project.org/web/packages/dendextend/vignettes/introduction.html

5

http://cran.r-project.org/web/packages/dendextend/vignettes/introduction.html

annCol border around each cell in the column annotation;

annRow border around each cell in the row annotation;

annLeg border around each cell in the annotation legend(s);

base default specification to use for each element – if not otherwise defined.

all borders

aheatmap(x, annCol = ann_col, border = TRUE)

around data matrix

aheatmap(x, annCol = ann_col, border = list(matrix = TRUE))

finer control on each element

aheatmap(x, annCol = ann_col, border = list(cell = list(lwd=2)

, matrix = list(col='blue', lwd=4)

, annCol='green'

, annLeg = 'red'))

4 5 2 6 9 10 7 1 3 8

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18
Groups

1
2

0.2

0.4

0.6

0.8

4 5 2 6 9 10 7 1 3 8

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18
Groups

1
2

0.2

0.4

0.6

0.8

4 5 2 6 9 10 7 1 3 8

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18
Groups

1
2

0.2

0.4

0.6

0.8

Figure 2: Border control

7 Colours

8 Labels

9 Legends

Annotated heatmaps have two types of legends, one showing the colour-value scale used to visualise
the data matrix and another one for the annotation tracks.

9.1 Colour scale

The very principle of a heatmap is to bin data values into a certain number of intervals (or breaks),
associating each of these with a given colour. The colour scale is the legend that provides details
about how to read the resulting colour coded data matrix. As such, it serves multiple purposes:

• provide the mapping between colours and value intervals;

• show the actual range of displayed values;

• optionnaly show the overall distribution of values.

6

9.1.1 Colours and breaks

9.1.2 Look and position

As for other components in annotated heatmaps, the position of the colour scale is controlled by
the argument layout, which can also be used to specify if the scale should expand over the full
height/width or have a limited fixed size.

By default the scale is placed on the top-right corner of the data matrix, with a limited fixed
size. Figure 3 illustrates how to easily obtain some other commonly used positions/look, through
the use of special layout shortcuts. More options are available, as detailed in the manual page for
aheatmap layout.

vertical on the right expanded over the full height

aheatmap(x, layout = '*')

horizontal at the bottom-right corner

aheatmap(x, layout = '_')

horizontal the bottom, expanded over the full width

aheatmap(x, layout = '_*')

vertical on the left (when not using/showing row dendrogram)

aheatmap(x, Rowv = NA, layout = '^')

4 5 2 6 9 10 7 1 3 8

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18

0.2

0.4

0.6

0.8

4 5 2 6 9 10 7 1 3 8

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18

0.2 0.4 0.6 0.8

4 5 2 6 9 10 7 1 3 8

13

4

2

11

17

6

20

10

1

12

19

8

5

15

3

9

16

14

7

18

0.2 0.4 0.6 0.8 4 5 2 6 9 10 7 1 3 8

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0.2

0.4

0.6

0.8

Figure 3: Colour scale alternative layouts: the scale can be placed in different areas around the
data matrix and expanded to full height/width.

9.2 Annotations

10 Session Info

• R version 3.1.2 (2014-10-31), x86_64-pc-linux-gnu

• Locale: LC_CTYPE=en_US.UTF-8, LC_NUMERIC=C, LC_TIME=en_ZA.UTF-8,
LC_COLLATE=en_US.UTF-8, LC_MONETARY=en_ZA.UTF-8, LC_MESSAGES=en_US.UTF-8,
LC_PAPER=en_ZA.UTF-8, LC_NAME=C, LC_ADDRESS=C, LC_TELEPHONE=C,
LC_MEASUREMENT=en_ZA.UTF-8, LC_IDENTIFICATION=C

• Base packages: base, datasets, graphics, grDevices, methods, parallel, stats, utils

• Other packages: BH 1.54.0-5, bigmemory 4.4.6, bigmemory.sri 0.1.3, Biobase 2.26.0,
BiocGenerics 0.12.1, cluster 1.15.3, colorspace 1.2-4, dendextend 0.17.5, knitr 1.8,
NMF 0.22, pkgmaker 0.25.9, RColorBrewer 1.0-5, registry 0.2, rngtools 1.2.4,
synchronicity 1.1.4

• Loaded via a namespace (and not attached): codetools 0.2-9, digest 0.6.4, doParallel 1.0.8,
evaluate 0.5.5, foreach 1.4.2, formatR 1.0, ggplot2 1.0.0, grid 3.1.2, gridBase 0.4-7,
gtable 0.1.2, highr 0.4, iterators 1.0.7, magrittr 1.5, MASS 7.3-35, munsell 0.4.2, plyr 1.8.1,
proto 0.3-10, Rcpp 0.11.3, reshape2 1.4, scales 0.2.4, stringr 0.6.2, tools 3.1.2, whisker 0.3-2,
xtable 1.7-4

7

	Overview
	Preliminaries
	Installation
	Sample data

	Components
	Annotation tracks
	Column/row ordering
	Hierarchical clustering and dendrograms
	Display

	Forced order

	Borders
	Colours
	Labels
	Legends
	Colour scale
	Colours and breaks
	Look and position

	Annotations

	Session Info

